ANNEALING OF DAMAGE IN GaAs AND InP AFTER
IMPLANTATION OF Cd AND In

W. Pfeiffer1, M. Deicher1, R. Kalish2, R. Keller1, R. Magerle1, N. Moriya2, P. Pross1, H. Skudlik1,
Th. Wichert3, H. Wolf3 and
ISOLDE Collaboration4
1Fakultät für Physik, Universität Konstanz, D-7750 Konstanz, FRG
2Physics Department and Solid State Institute, Technion, Haifa 32000, Israel
3Technische Physik, Universität des Saarlandes, D-6600 Saarbrücken, FRG
4CERN, CH-1211 Geneva 23, Switzerland

ABSTRACT

The removal of damage and the electrical activation after heavy ion implantation of 111mCd and
111In was investigated using the perturbed angular correlation technique (PAC) and Hall
measurements. After implantation at 90 K and subsequent annealing the removal of structural
disorder in the vicinity of the probe atom 111In was observed around 300 K in GaAs and InP. The
annealing behavior in the high temperature regime (500 K to 1100 K) of GaAs implanted with
111mCd and 111In was investigated as a function of total implantation dose. After annealing at
600 K part of the Cd probe atoms are located in a slightly perturbed environment, the remainder in
a heavily perturbed one. For Cd annealing above 900 K leads to outdiffusion of Cd located in
heavily perturbed sites and electrical activation occurs. In contrast to Cd all In probe atoms are
located in a slightly perturbed environment and no In is lost by outdiffusion. The differences and
similarities of results obtained after Cd and In implantation are discussed in terms of extended
defects and their interactions with the probe atoms.

1. Introduction

Most of the investigations concerning the recovery of III-V compound semiconductors on a
microscopical scale were performed after irradiation of these materials with electrons, protons 1, or
neutrons 2. The situation after heavy ion implantation is different and up to now not well
understood. Ion implantation is leading to a much higher defect concentration, creating amorphous
regions in the material already at small doses 3. Studies of high temperature annealing of
implantation damage above 600 K in III-V materials mostly look at the electrical activation of
dopants 4 and supply no direct information on the annealing mechanisms. The basic defect
reactions were investigated at lower temperature by Rutherford backscattering 4, emission
channeling (EC) 5, positron annihilation 2, and Mößbauer measurements 6. As it was already shown,
PAC is also able to supply information on the annealing behavior of implanted dopants 7,8,9. The extension to different probe atoms (111In and 111mCd) and the variation of
implantation temperature and dose allow a more detailed discussion of the obtained PAC data in
this work.

2. Method

The PAC technique is sensitive to electric field gradients (efg) present at the site of the probe atom,
in our case 111In (t1/2 = 2.8 days) or 111mCd (t1/2 = 48 min), both decaying via the same
intermediate nuclear state. The interaction of the efg with the quadrupole moment Q of this state is
detected via the modulation of the anisotropy in the angular correlation of the two consecutively
emitted γ rays.