A new method to fabricate thin oxynitride/oxide gate dielectric for deep submicron devices

ATT Bell Laboratories, Holmdel, N. J. 07733,
*ATT Bell Laboratories, Murray Hill, N. J. 07974, USA.

In this paper, we report a new method to fabricate oxynitride/oxide gate dielectrics for MOS devices. This method utilizes a thin layer of oxynitride as a membrane for controlled diffusion of \(O_2 \) and oxidation of Si at high temperatures with low thermal budget. MOS devices made with these oxynitride/oxide structures have interface properties like thermal \(SiO_2 \) with a structure resistant to boron diffusion.

1. INTRODUCTION

Deep submicron devices with 0.1 - 0.25 \(\mu m \) gate dimensions require ultra thin gate oxides, 40-60 \(\AA \) equivalent of \(SiO_2 \) thickness. Thermal \(SiO_2 \) in this thickness range has four major problems:
1. Oxides in this thickness range have large pin-hole density[1].
2. It is difficult to control thickness uniformity of thin oxides by oxidation at high temperatures.
3. Oxidation of silicon at temperatures less than 900 °C generates large compressive stress and high fixed charge [2].
4. For ultrathin oxides, dopants from the p+ poly gate can easily diffuse into the device channel[3].

Various types of oxynitride processes ROXNOX or \(N_2O \) etc. have been reported to retard the boron penetration[4-6]. ROXNOX degrade the channel mobility and have high fixed charge. Both ROXNOX and \(N_2O \) need high temperature to incorporate few percent N into the oxynitride. We report a new method to fabricate ultra thin oxynitride/oxide(OXN/OX) structures which can be fabricated with low thermal budget.

2. APPROACH

As shown in figure 1, this new approach involves the slow diffusion of \(O_2 \) through a thin oxynitride(40-50\(\AA \)) layer with N/O ratio less than 0.4. This slow diffusion of \(O_2 \) through the oxynitride can be utilized to do a controlled 10-15 \(\AA \) oxide growth at relatively high temperatures \(\geq 950 \) °C. The 10-15\(\AA \) of silicon dioxide grown at high temperature, but at a slow rate, controls the interface properties and the top oxynitride layer acts as a barrier for boron diffusion.

0167-9317/93/$06.00 © 1993 – Elsevier Science Publishers B.V. All rights reserved.
3. FABRICATION

This dual layer of oxynitride/oxide was fabricated by the following method. A thin layer (50Å) of oxynitride was deposited on <100> P or N Si. The oxynitride chemistry was controlled by the ratio of SiH₂Cl₂, NH₃, and N₂O and deposition temperature. The N/O ratio of the film was varied by changing the ratio of NH₃/N₂O. The N/O ratio was selected to give a desired rate of oxide growth. The deposition rate was ~1Å/min. Figure 2 compares the rate of oxidation through a pure silicon dioxide and through an oxynitride layer with N/O ratio of 0.2. This slow oxidation results in a thin 10-15Å layer of silicon dioxide near the silicon interface. Figure 3 shows a high resolution de-focussed image of the oxynitride/oxide structure. The image clearly shows the presence of a second layer near the silicon interface. (Except for the TEM data, the thickness tₒₓ for the OXN and the OXN/OX structures is equivalent thickness of SiO₂).

Figure 1: Schematic diagram of the OXN/OX process.

Figure 2: Oxidation through 50Å OXN and 52Å oxide.

Figure 3: HRTEM(de-focussed) image of OXN/OX structure.
4. ELECTRICAL CHARACTERISTICS

Electrical characteristics of these dual layer OXN/OX structures were evaluated on MOS capacitors with Al or n+ poly gate or MOS transistors with p+ poly gate. As expected, MOS capacitors with the OXN do not have very good dielectric/Si interface. The interface properties start improving after oxidation. For the OXN structures, the fixed charge density \(Q_f \) varied from \(-5 \times 10^{11}/\text{cm}^2\) to \(3 \times 10^{11}/\text{cm}^2\). For the corresponding OXN/OX structures, oxidized at 950°C for 40 sec-80sec, the \(Q_f \) varies from \(5 \times 10^{10}/\text{cm}^2\) to \(7 \times 10^{11}/\text{cm}^2\). This fixed charge in OXN/OX structure was reduced to \(1-3 \times 10^{11}\) by the high temperature argon anneal for 40 sec at 950°C. These data imply that OXN structures may have tensile stress and the OXN/OX structure may have compressive stress at the silicon interface.

The change in the nature of the interface can also be seen in the I-V characteristics (Fig.4) for OXN and OXN/OX MOS capacitors. At the same electric field, the leakage current density for the OXN/OX capacitors is much lower than the OXN capacitors. Figure 5 shows the C-V characteristics of OXN/OX structure with poly gate. These samples were oxidized for 40 sec at 950 °C and argon annealed at the same temperature and for the same time. As seen in this figure the OXN/OX/Si structure has a good interface and the interface state density of \(<5 \times 10^{10}/\text{cm}^2\) at the OX/Si interface.

![Figure 4: I-V characteristics of OXN and OXN/OX structures.](image)

![Figure 5: High and low frequency C-V curves of OXN/OX structure.](image)

Boron penetration studies were also done with p+poly/OXN/OX/Si structures. Transistors subjected to 800 °C, 60min plus 850 °C, 60min show the same threshold voltage as the transistors subjected to only 800 °C, 60 min. These data imply the OXN/OX gate dielectric retard boron penetration.
The table summarizes the electrical data on MOS capacitors and p-channel transistors with OXN/OX and SiO₂ of the same thickness. These data clearly show that OXN/OX and pure silicon dioxide of the same thickness have similar electrical characteristics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OXN(46Å)</th>
<th>OXN/OX(63Å)</th>
<th>SiO₂(60Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_i/cm^2)</td>
<td>-3--+3\times10^{11}</td>
<td>0.5--7\times10^{11}</td>
<td>1.5\times10^{11}</td>
</tr>
<tr>
<td>(Q_i/cm^2) with Ar An.</td>
<td>1\times10^{11}</td>
<td>5\times10^{10}</td>
<td>5\times10^{10} A</td>
</tr>
<tr>
<td>Av. Current/cm²(at 3MV/cm)</td>
<td>2\times10^{-8} A</td>
<td>5\times10^{-10} A</td>
<td>5\times10^{-10} A</td>
</tr>
<tr>
<td>Mobility for Holes/cm²/V-s</td>
<td>-</td>
<td>110</td>
<td>116</td>
</tr>
<tr>
<td>(\Delta V_i) due to B</td>
<td>0</td>
<td>Varies with process</td>
<td></td>
</tr>
</tbody>
</table>

5. SUMMARY

Oxynitride/oxide structures show that oxidation kinetics can be controlled by a diffusion barrier such as oxynitride. The interface charge (and by implication stress) can be varied at will, providing a tool to control the Si/insulator interface. The bottom layer displays good electrical characteristics and the structure is resistant to boron penetration. In this work CVD oxynitride has been used as a membrane to do a controlled diffusion of O₂ and oxidation of Si at relatively high temperatures. In principle, it is possible to replace this CVD oxynitride layer by other oxynitriles or other dielectrics.

REFERENCES:

Acknowledgements: We thank K. Krisch, G. S. Higashi, R.E. Howard and A. Ourmazd for discussions.